Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.298
Filtrar
1.
J Cell Mol Med ; 28(8): e18309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613345

RESUMO

There are hundreds of prognostic models for ovarian cancer. These genes are based on different gene classes, and there are many ways to construct the models. Therefore, this paper aims to build the most stable prognostic evaluation system known to date through 101 machine learning strategies. We combined 101 algorithm combinations with 10 machine learning algorithms to create antigen presentation-associated genetic markers (AIDPS) with outstanding precision and steady performance. The inclusive set of algorithms comprises the elastic network (Enet), Ridge, stepwise Cox, Lasso, generalized enhanced regression model (GBM), random survival forest (RSF), supervised principal component (SuperPC), Cox partial least squares regression (plsRcox), survival support vector machine (Survival-SVM). Then, in the train cohort, the prediction model was fitted using a leave-one cross-validation (LOOCV) technique, which involved 101 different possible combinations of prognostic genes. Seven validation data sets (GSE26193, GSE26712, GSE30161, GSE63885, GSE9891, GSE140082 and ICGC_OV_AU) were compared and analysed, and the C-index was calculated. Finally, we collected 32 published ovarian cancer prognostic models (including mRNA and lncRNA). All data sets and prognostic models were subjected to a univariate Cox regression analysis, and the C-index was calculated to demonstrate that the antigen presentation process should be the core criterion for evaluating ovarian cancer prognosis. In a univariate Cox regression analysis, 22 prognostic genes were identified based on the expression profiles of 283 genes involved in antigen presentation and the intersection of genes (p < 0.05). AIDPS were developed by our machine learning-based integration method, which was applied to these 22 genes. One hundred and one prediction models are fitted using the LOOCV framework, and the C-index is calculated for each model across all validation sets. Interestingly, RSF + Lasso was the best model overall since it had the greatest average C-index and the highest C-index of any combination of models tested on the validated data sets. In comparing external cohorts, we found that the C-index correlated AIDPS method using the RSF + Lasso method in 101 prediction models was in contrast to other features. Notably, AIDPS outperformed the vast majority of models across all data sets. Antigen-presenting anti-tumour immune pathways can be used as a representative gene set of ovarian cancer to track the prognosis of patients with cancer. The antigen-presenting model obtained by the RSF + Lasso method has the best C-INDEX, which plays a key role in developing antigen-presenting targeted drugs in ovarian cancer and improving the treatment outcome of patients.


Assuntos
Apresentação de Antígeno , Neoplasias Ovarianas , Humanos , Feminino , Apresentação de Antígeno/genética , Neoplasias Ovarianas/genética , Algoritmos , Sistemas de Liberação de Medicamentos
2.
J Transl Med ; 22(1): 57, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221616

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are heterogeneous and can influence the progression of prostate cancer in multiple ways; however, their capacity to present and process antigens in PRAD has not been investigated. In this study, antigen presentation and process-related CAFs (APPCAFs) were identified using bioinformatics, and the clinical implications of APPCAF-related signatures in PRAD were investigated. METHODS: SMART technology was used to sequence the transcriptome of primary CAFs isolated from patients undergoing different treatments. Differential expression gene (DEG) screening was conducted. A CD4 + T-cell early activation assay was used to assess the activation degree of CD4 + T cells. The datasets of PRAD were obtained from The Cancer Genome Atlas (TCGA) database and NCBI Gene Expression Omnibus (GEO), and the list of 431 antigen presentation and process-related genes was obtained from the InnateDB database. Subsequently, APP-related CAFs were identified by nonnegative matrix factorization (NMF) based on a single-cell seq (scRNA) matrix. GSVA functional enrichment analyses were performed to depict the biological functions. A risk signature based on APPCAF-related genes (APPCAFRS) was developed by least absolute shrinkage and selection operator (LASSO) regression analysis, and the independence of the risk score as a prognostic factor was evaluated by univariate and multivariate Cox regression analyses. Furthermore, a biochemical recurrence-free survival (BCRFS)-related nomogram was established, and immune-related characteristics were assessed using the ssGSEA function. The immune treatment response in PRAD was further analyzed by the Tumor Immune Dysfunction and Exclusion (TIDE) tool. The expression levels of hub genes in APPCAFRS were verified in cell models. RESULTS: There were 134 upregulated and 147 downregulated genes, totaling 281 differentially expressed genes among the primary CAFs. The functions and pathways of 147 downregulated DEGs were significantly enriched in antigen processing and presentation processes, MHC class II protein complex and transport vesicle, MHC class II protein complex binding, and intestinal immune network for IgA production. Androgen withdrawal diminished the activation effect of CAFs on T cells. NMF clustering of CAFs was performed by APPRGs, and pseudotime analysis yielded the antigen presentation and process-related CAF subtype CTSK + MRC2 + CAF-C1. CTSK + MRC2 + CAF-C1 cells exhibited ligand‒receptor connections with epithelial cells and T cells. Additionally, we found a strong association between CTSK + MRC2 + CAF-C1 cells and inflammatory CAFs. Through differential gene expression analysis of the CTSK + MRC2 + CAF-C1 and NoneAPP-CAF-C2 subgroups, 55 significant DEGs were identified, namely, APPCAFRGs. Based on the expression profiles of APPCAFRGs, we divided the TCGA-PRAD cohort into two clusters using NMF consistent cluster analysis, with the genetic coefficient serving as the evaluation index. Four APPCAFRGs, THBS2, DPT, COL5A1, and MARCKS, were used to develop a prognostic signature capable of predicting BCR occurrence in PRAD patients. Subsequently, a nomogram with stability and accuracy in predicting BCR was constructed based on Gleason grade (p = n.s.), PSA (p < 0.001), T stage (p < 0.05), and risk score (p < 0.01). The analysis of immune infiltration showed a positive correlation between the abundance of resting memory CD4 + T cells, M1 macrophages, resting dendritic cells, and the risk score. In addition, the mRNA expression levels of THBS2, DPT, COL5A1, and MARCKS in the cell models were consistent with the results of the bioinformatics analysis. CONCLUSIONS: APPCAFRS based on four potential APPCAFRGs was developed, and their interaction with the immune microenvironment may play a crucial role in the progression to castration resistance of PRAD. This novel approach provides valuable insights into the pathogenesis of PRAD and offers unexplored targets for future research.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias da Próstata , Masculino , Humanos , Apresentação de Antígeno/genética , Análise de Sequência de RNA , Algoritmos , Prognóstico , Microambiente Tumoral
3.
Mol Biol (Mosk) ; 57(6): 21-30, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062971

RESUMO

Epigenetic alterations associated with cancer have been shown to facilitate tumorigenesis and promote metastasis. In the study of cancer metastasis, epigenetics has been revealed to play a crucial role in supporting tumour immune evasion. As a result, epigenetic drugs have been identified as potential agents to activate anti-tumour immune responses and reverse tumour immunologically tolerant states. Mounting evidence is showing aberrant expression of MHC class I antigen processing molecules in cancers and their upregulation as a potential indicator for anti-tumour immunity. In this study, we demonstrate that the epigenetic drug Trichostatin A (TSA), a histone deacetylase inhibitor, can restore MHC I antigen presentation machinery (MHC I APM) genes in human breast cancer cells (MCF-7). Treatment with TSA resulted in the upregulation of MHC I, B2M, and PSMB9 in MCF-7 monolayer cells, and MHC I, B2M, PSMB9, PSMB8, TAP1, and TAP2 in MCF-7 spheroid cells. Interestingly, treatment with TSA also increased CD274 expression in these cells and enhanced the invasion ability of the MCF-7 spheroid. This aggressive behaviour was confirmed by increased expression of metastatic-related genes, nNav1.5 and MMP1. In summary, although the restoration of MHCIAPM expression was achieved by TSA, the upregulation of metastatic genes and CD274 also enhanced the invasion ability of breast cancer cells. These findings suggest the need for careful consideration when utilizing epigenetic drugs for breast cancer therapy.


Assuntos
Apresentação de Antígeno , Neoplasias da Mama , Humanos , Feminino , Apresentação de Antígeno/genética , Regulação para Cima , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Expressão Gênica
4.
Proc Natl Acad Sci U S A ; 120(39): e2305756120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722062

RESUMO

Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Apresentação de Antígeno/genética , Genes MHC da Classe II , Complexo Principal de Histocompatibilidade , Neurônios Motores , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear
5.
Oncoimmunology ; 12(1): 2212550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205983

RESUMO

DNA vaccines have been an attractive approach for treating cancer patients, however have demonstrated modest immunogenicity in human clinical trials. Dendritic cells (DCs) are known to cross-present DNA-encoded antigens expressed in bystander cells. However, we have previously reported that B cells, and not DCs, serve as primary antigen-presenting cells (APCs) following passive uptake of plasmid DNA. Here we sought to understand the requirements for B cells to present DNA-encoded antigens, to ultimately increase the immunogenicity of plasmid DNA vaccines. Using ovalbumin-specific OT-1 CD8+ T cells and isolated APC populations, we demonstrated that following passive uptake of plasmid DNA, B cells but not DC, can translate the encoded antigen. However, CD8 T cells were only activated by B cells when they were co-cultured with DCs. We found that a cell-cell contact is required between B cells and DCs. Using MHCI KO and re-purification studies, we demonstrated that B cells were the primary APCs and DCs serve to license this function. We further identified that the gene expression profiles of B cells that have been licensed by DCs, compared to the B cells that have not, are vastly different and have signatures similar to B cells activated with a TLR7/8 agonist. Our data demonstrate that B cells transcribe and translate antigens encoded by plasmid DNA following passive uptake, however require licensing by live DC to present antigen to CD8 T cells. Further study of the role of B cells as APCs will be important to improve the immunological efficacy of DNA vaccines.


Assuntos
Células Dendríticas , Vacinas de DNA , Humanos , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , Apresentação de Antígeno/genética , DNA/metabolismo , Plasmídeos/genética , Adjuvantes Imunológicos/metabolismo
6.
J Clin Immunol ; 43(1): 217-228, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227411

RESUMO

Major histocompatibility complex class I (MHC-I) deficiency, also known as bare lymphocyte syndrome type 1 (BLS-1), is a rare autosomal recessively inherited immunodeficiency disorder with remarkable clinical and biological heterogeneity. Transporter associated with antigen processing (TAP) is a member of the ATP-binding cassette superfamily of transporters and consists of two subunits, TAP1 or TAP2. Any defect resulting from a mutation or deletion of these two subunits may adversely affect the peptide translocation in the endoplasmic reticulum, which is an important process for properly assembling MHC-I molecules. To date, only 12 TAP2-deficient patients were reported in the literature. Herein, we described two Iranian cases with 2 and 3 decades of delayed diagnosis of chronic necrotizing granulomatous skin lesions due to TAP2 deficiency without pulmonary involvement. Segregation analysis in family members identified 3 additional homozygous asymptomatic carriers. In both asymptomatic and symptomatic carriers, HLA-I expression was only 4-15% of the one observed in healthy controls. We performed the first deep immunophenotyping in TAP2-deficient patients. While total CD8 T cell counts were normal as previously reported, the patients showed strongly impaired naïve CD8 T cell counts. Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cell counts were increased.


Assuntos
Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Antígenos de Histocompatibilidade Classe I , Imunodeficiência Combinada Severa , Humanos , Apresentação de Antígeno/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Diagnóstico Tardio , Granuloma/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Irã (Geográfico) , Imunodeficiência Combinada Severa/genética
7.
Sci Rep ; 12(1): 3590, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246593

RESUMO

Extrachromosomal DNA (ecDNA) is a type of circular and tumor specific genetic element. EcDNA has been reported to display open chromatin structure, facilitate oncogene amplification and genetic material unequal segregation, and is associated with poor cancer patients' prognosis. The ability of immune evasion is a typical feature for cancer progression, however the tumor intrinsic factors that determine immune evasion remain poorly understood. Here we show that the presence of ecDNA is associated with markers of tumor immune evasion, and obtaining ecDNA could be one of the mechanisms employed by tumor cells to escape immune surveillance. Tumors with ecDNA usually have comparable TMB and neoantigen load, however they have lower immune cell infiltration and lower cytotoxic T cell activity. The microenvironment of tumors with ecDNA shows increased immune-depleted, decreased immune-enriched fibrotic types. Both MHC class I and class II antigen presentation genes' expression are decreased in tumors with ecDNA, and this could be the underlying mechanism for ecDNA associated immune evasion. This study provides evidence that ecDNA formation is an immune escape mechanism for cancer cells.


Assuntos
DNA de Forma B , Neoplasias , Apresentação de Antígeno/genética , Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Oncogenes , Evasão Tumoral/genética , Microambiente Tumoral
8.
J Immunol Res ; 2022: 4542487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103245

RESUMO

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that is characterized by autoimmunity and its mediated ß-cell damage. Chronic exposure of ß-cells to proinflammatory cytokines is known to regulate the expression of many genes, subsequently resulting in the impairment of some signaling pathways involved with insulin production and secretion and/or ß-cell apoptosis. In our study, RNA sequencing technology was applied to identify differentially expressed mRNAs in MIN6 cells treated with a mix of cytokines, including IL-1ß, TNF-α, and IFN-γ. The results showed 809 upregulated and 946 downregulated protein-coding mRNAs in MIN6 cells upon the stimulation of cytokines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of dysregulated genes. The networks of circRNA-mRNA were constructed between differentially mRNAs and dysregulated expressed circRNAs in our previous study. In addition, we selected 8 dysregulated mRNAs for further validation by quantitative real-time PCR. The RNA sequencing data showed 809 upregulated and 946 downregulated protein-coding mRNAs. GO analysis showed that the top 10 significant "biological processes," "cellular components," and "molecular functions" for upregulated mRNAs include "immune system process," "inflammatory response," and "innate immune response" and the top 10 for downregulated mRNAs include "cell cycle," "mitotic cytokinesis," and "cytoplasm." KEGG analysis showed that these differentially expressed genes were involved with "antigen processing and presentation," "TNF signaling pathway" and "type 1 diabetes," "cell cycle," "necroptosis," and "Rap1 signaling pathway." We also constructed the networks of differentially expressed circRNAs and mRNAs. We observed that upregulated circRNA 006029 and downregulated circRNA 000286 and 017277 were associated with the vast majority of selected dysregulated mRNAs, while circRNA 013053 was only related to the protein-coding gene, Slc7a2. To the summary, these data indicated that differentially expressed mRNAs may play key or partial roles in cytokine-mediated ß-cell dysfunction and gave us the hint that circRNAs might regulate mRNAs, thereby contributing to the development of T1DM. The current study provided a systematic perspective on the potential functions and possible regulatory mechanisms of mRNAs in proinflammatory cytokine-induced ß-cell destruction.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/fisiologia , RNA Circular/genética , RNA Mensageiro/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Apresentação de Antígeno/genética , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Mediadores da Inflamação/metabolismo , Transdução de Sinais/genética , Transcriptoma
9.
Neoplasma ; 69(2): 443-455, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068162

RESUMO

Human leukocyte antigen class I (HLA class I) antigen processing and presentation pathway (APP) defines anti-tumor immune response. ERAP, TAP, tapasin (TAPBP), and IFNγ modulate APP: control HLA class I expression in the tumor and the repertoire of presented tumor antigens. At the same time, vascular endothelial growth factor (VEGF) acts as an immunomodulator in the tumor microenvironment. The objective of the current study was to examine the association of single nucleotide polymorphisms (SNPs) in the ERAP1, ERAP2, TAP1, TAP2, TAPBP, IFNG genes with the corresponding mRNA expression in bladder cancer (BC) risk and recurrence after transurethral resection of BC. Moreover, we assessed the relationship between HLA class I and VEGF plasma levels and BC recurrence. We analyzed 9 SNPs in 124 BC patients using TaqMan genotyping and compared them with the data from 503 healthy individuals from the 1000 Genomes Project. In addition, we quantified the effects of SNPs on the corresponding mRNA expression in tumor and non-tumor adjacent tissue in 60 BC patients with primary and 30 with recurrent tumor by quantitative real-time PCR. Furthermore, the plasma HLA class I and VEGF levels were analyzed in BC patients and healthy controls by ELISA. IFNG (rs1861493) was associated with BC risk, TAPBP (rs3106189, rs2071888) with recurrence-free survival (RFS). Moreover, TAPBP mRNA expression was lower in tumors than in the adjacent tissue. The SNPs ERAP2 (rs251339) and TAP2 (rs241447, rs241448) variants affected mRNA expression in BC tissue. In tumor tissue, the high mRNA expression of ERAP1 was more common in BC patients with single tumors, ERAP2 in non-smokers, and TAP2 mRNA in recurrence. The lower HLA and higher VEGF plasma levels were observed in BC patients compared with healthy controls. We conclude that the genetic elements responsible for MHC class I APP may influence the BC risk, risk of recurrence, and RFS.


Assuntos
Neoplasias da Bexiga Urinária , Fator A de Crescimento do Endotélio Vascular , Aminopeptidases/genética , Aminopeptidases/metabolismo , Apresentação de Antígeno/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Recidiva Local de Neoplasia/genética , Microambiente Tumoral , Neoplasias da Bexiga Urinária/genética
10.
Viruses ; 14(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062332

RESUMO

Cytomegaloviruses (CMVs) are host species-specific and have adapted to their respective mammalian hosts during co-evolution. Host-adaptation is reflected by "private genes" that have specialized in mediating virus-host interplay and have no sequence homologs in other CMV species, although biological convergence has led to analogous protein functions. They are mostly organized in gene families evolved by gene duplications and subsequent mutations. The host immune response to infection, both the innate and the adaptive immune response, is a driver of viral evolution, resulting in the acquisition of viral immune evasion proteins encoded by private gene families. As the analysis of the medically relevant human cytomegalovirus by clinical investigation in the infected human host cannot make use of designed virus and host mutagenesis, the mouse model based on murine cytomegalovirus (mCMV) has become a versatile animal model to study basic principles of in vivo virus-host interplay. Focusing on the immune evasion of the adaptive immune response by CD8+ T cells, we review here what is known about proteins of two private gene families of mCMV, the m02 and the m145 families, specifically the role of m04, m06, and m152 in viral antigen presentation during acute and latent infection.


Assuntos
Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Muromegalovirus/genética , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/virologia , Modelos Animais de Doenças , Evasão da Resposta Imune , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Virais
11.
Front Immunol ; 13: 909932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591220

RESUMO

Introduction: Tumor microenvironment (TME) has been shown to be extensively involved in tumor development. However, the dynamic change of TME components and their effects are still unclear. Here, we attempted to identify TME-related genes that could help predict survival and may be potential therapeutic targets. Methods: Data was collected from UCSC Xena and GEO database. ESTIMATE and CIBERSORT algorithms were applied to estimate the components and the proportions of TIICs in TME. We analyzed the gene expression differences of immune components and stromal components, respectively, and finally got the overlapped DEGs. Through protein-protein interaction (PPI) network and univariate Cox regression analysis based on shared DEGs, we screened out and validated the TME-related genes. Focusing on this gene, we analyzed the expression and prognostic value of this gene, and investigated its relationship with immune cells by correlation analysis, single cell analysis, immunohistochemistry and immunofluorescence analysis. Results: Through a series analysis, we found that the proportion of immune and stromal components was an important prognostic factor, and screened out a key gene, LPAR5, which was highly correlated with prognosis and metastasis. And the expression of LPAR5 was positively correlated with immune cells, especially macrophages, indicating LPAR5+ macrophages played an important role in tumor microenvironment of osteosarcoma. Meanwhile, the genes in LPAR5 high expression group were enriched in immune-related activities and pathways, and differentially expressed genes between LPAR5+ macrophages and LPAR5- macrophages were enriched in the biological processes associated with phagocytosis and antigen presentation. What' more, we found that LPAR5 was mainly expressed in TME, and high LPAR5 expression predicting a better prognosis. Conclusion: We identified a TME-related gene, LPAR5, which is a promising indicator for TME remodeling in osteosarcoma. Particularly, LPAR5+ macrophages might have great potential to be a prognostic factor and therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Macrófagos , Osteossarcoma , Receptores de Ácidos Lisofosfatídicos , Microambiente Tumoral , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Macrófagos/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Fagocitose/genética , Fagocitose/imunologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia
12.
Mol Immunol ; 141: 305-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920325

RESUMO

The field of mRNA translation has witnessed an impressive expansion in the last decade. The once standard model of translation initiation has undergone, and is still undergoing, a major overhaul, partly due to more recent technical advancements detailing, for example, initiation at non-AUG codons. However, some of the pioneering works in this area have come from immunology and more precisely from the field of antigen presentation to the major histocompatibility class I (MHC-I) pathway. Despite early innovative studies from the lab of Nilabh Shastri demonstrating alternative mRNA translation initiation as a source for MHC-I peptide substrates, the mRNA translation field did not include these into their models. It was not until the introduction of the ribo-sequence technique that the extent of non-canonical translation initiation became widely acknowledged. The detection of peptides on MHC-I molecules by CD8 + T cells is extremely sensitive, making this a superior model system for studying alternative mRNA translation initiation from specific mRNAs. In view of this, we give a brief history on alternative initiation from an immunology perspective and its fundamental role in allowing the immune system to distinguish self from non-self and at the same time pay tribute to the works of Nilabh Shastri.


Assuntos
Apresentação de Antígeno/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos/genética , Peptídeos/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/imunologia
13.
J Clin Endocrinol Metab ; 107(3): e935-e946, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747488

RESUMO

OBJECTIVE: To evaluate the role of autoantibodies to N-terminally truncated glutamic acid decarboxylase GAD65(96-585) (t-GADA) as a marker for type 1 diabetes (T1D) and to assess the potential human leukocyte antigen (HLA) associations with such autoantibodies. DESIGN: In this cross-sectional study combining data from the Finnish Pediatric Diabetes Register, the Type 1 Diabetes Prediction and Prevention study, the DIABIMMUNE study, and the Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity study, venous blood samples from 760 individuals (53.7% males) were analyzed for t-GADA, autoantibodies to full-length GAD65 (f-GADA), and islet cell antibodies. Epitope-specific GAD autoantibodies were analyzed from 189 study participants. RESULTS: T1D had been diagnosed in 174 (23%) participants. Altogether 631 (83%) individuals tested positive for f-GADA and 451 (59%) for t-GADA at a median age of 9.0 (range 0.2-61.5) years. t-GADA demonstrated higher specificity (46%) and positive predictive value (30%) for T1D than positivity for f-GADA alone (15% and 21%, respectively). Among participants positive for f-GADA, those who tested positive for t-GADA carried more frequently HLA genotypes conferring increased risk for T1D than those who tested negative for t-GADA (77% vs 53%; P < 0.001). CONCLUSIONS: Autoantibodies to N-terminally truncated GAD improve the screening for T1D compared to f-GADA and may facilitate the selection of participants for clinical trials. HLA class II-mediated antigen presentation of GAD(96-585)-derived or structurally similar peptides might comprise an important pathomechanism in T1D.


Assuntos
Autoanticorpos/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Glutamato Descarboxilase/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Fragmentos de Peptídeos/imunologia , Adolescente , Adulto , Apresentação de Antígeno/genética , Autoanticorpos/imunologia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Estudos Transversais , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Predisposição Genética para Doença , Técnicas de Genotipagem , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Valor Preditivo dos Testes , Medição de Risco/métodos , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-33583391

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc-dependent dicarboxypeptidase with two catalytic components, which has an important role in regulating blood pressure by converting angiotensin I to angiotensin II. ACE breaks down other peptides besides angiotensin I and has a variety of physiological effects together with renal growth and reproduction in men. ACE also acts on innate and acquired immune systems by affecting macrophage and neutrophil function, and these outcomes are exacerbated due to the overexpression of ACE. Overexpression of ACE in macrophages imposes antitumor and antimicrobial response, and it enhances the ability of neutrophils to produced super peroxide that has a bactericidal effect. ACE is also known to contribute to the expression of Major Histocompatibility Complex (MHC) class I and MHC class II peptides through enzymatic alterations of these peptides. Apprehending the expression of ACE and its effects on myeloid cell (myelogenous cells) activity can be promising in therapeutic interventions, including treatment of infection and malignancy.


Assuntos
Imunidade/genética , Peptidil Dipeptidase A/fisiologia , Angiotensinas/metabolismo , Angiotensinas/fisiologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/fisiologia , Feminino , Antígenos de Histocompatibilidade Classe I/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Imunidade/fisiologia , Infecções/genética , Infecções/imunologia , Infecções/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Peptidil Dipeptidase A/genética
15.
J Invest Dermatol ; 142(3 Pt B): 750-759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34294386

RESUMO

Autoreactive T cells pose a constant risk for the emergence of autoimmune skin diseases in genetically predisposed individuals carrying certain HLA risk alleles. Immune tolerance mechanisms are opposed by broad HLA-presented self-immunopeptidomes, a predefined repertoire of polyspecific TCRs, the continuous generation of new antibody specificities by somatic recombination of Ig genes in B cells, and heightened proinflammatory reactivity. Increased autoantigen presentation by HLA molecules, cross-activation of pathogen-induced T cells against autologous structures, altered metabolism of self-proteins, and excessive production of proinflammatory signals may all contribute to the breakdown of immune tolerance and the development of autoimmune skin diseases.


Assuntos
Doenças Autoimunes , Dermatopatias , Apresentação de Antígeno/genética , Autoantígenos , Doenças Autoimunes/genética , Humanos , Tolerância Imunológica , Receptores de Antígenos de Linfócitos T/metabolismo , Dermatopatias/genética
16.
Front Immunol ; 12: 749433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759929

RESUMO

The investigation of the molecular background of direct communication of neurons and immune cells in the brain is an important issue for understanding physiological and pathological processes in the nervous system. Direct contacts between brain-infiltrating immune cells and neurons, and the neuromodulatory effect of immune cell-derived regulatory peptides are well established. Several aspects of the role of immune and glial cells in the direct neuro-immune communication are also well known; however, there remain many questions regarding the molecular details of signaling from neurons to immune cells. Thus, we report here on the neuronal expression of genes encoding antimicrobial and immunomodulatory peptides, as well as proteins of immune cell-specific activation and communication mechanisms. In the present study, we analyzed the single-cell sequencing data of our previous transcriptomic work, obtained from electrophysiologically identified pyramidal cells and interneurons of the murine prefrontal cortex. We filtered out the genes that may be associated with the direct communication between immune cells and neurons and examined their expression pattern in the neuronal transcriptome. The expression of some of these genes by cortical neurons has not yet been reported. The vast majority of antimicrobial (~53%) and immune cell protein (~94%) transcripts was identified in the transcriptome of the 84 cells, owing to the high sensitivity of ultra-deep sequencing. Several of the antimicrobial and immune process-related protein transcripts showed cell type-specific or enriched expression. Individual neurons transcribed only a fraction of the investigated genes with low copy numbers probably due to the bursting kinetics of gene expression; however, the comparison of our data with available transcriptomic datasets from immune cells and neurons suggests the functional relevance of the reported findings. Accordingly, we propose further experimental and in silico studies on the neuronal expression of immune system-related genes and the potential role of the encoded proteins in neuroimmunological processes.


Assuntos
Córtex Pré-Frontal/imunologia , Células Piramidais/imunologia , Animais , Apresentação de Antígeno/genética , Peptídeos Antimicrobianos/genética , Linfócitos B/imunologia , Masculino , Camundongos Endogâmicos C57BL , Análise de Célula Única , Linfócitos T/imunologia , Transcriptoma
17.
Cell Mol Life Sci ; 78(23): 7397-7426, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708251

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterised by cognitive impairment, behavioural alteration, and functional decline. Over 130 AD-associated susceptibility loci have been identified by genome-wide association studies (GWAS), while whole genome sequencing (WGS) and whole exome sequencing (WES) studies have identified AD-associated rare variants. These variants are enriched in APOE, TREM2, CR1, CD33, CLU, BIN1, CD2AP, PILRA, SCIMP, PICALM, SORL1, SPI1, RIN3, and more genes. Given that aging is the single largest risk factor for late-onset AD (LOAD), the accumulation of somatic mutations in the brain and blood of AD patients have also been explored. Collectively, these genetic findings implicate the role of innate and adaptive immunity in LOAD pathogenesis and suggest that a systemic failure of cell-mediated amyloid-ß (Aß) clearance contributes to AD onset and progression. AD-associated variants are particularly enriched in myeloid-specific regulatory regions, implying that AD risk variants are likely to perturbate the expression of myeloid-specific AD-associated genes to interfere Aß clearance. Defective phagocytosis, endocytosis, and autophagy may drive Aß accumulation, which may be related to naturally-occurring antibodies to Aß (Nabs-Aß) produced by adaptive responses. Passive immunisation is providing efficiency in clearing Aß and slowing cognitive decline, such as aducanumab, donanemab, and lecanemab (ban2401). Causation of AD by impairment of the innate immunity and treatment using the tools of adaptive immunity is emerging as a new paradigm for AD, but immunotherapy that boosts the innate immune functions of myeloid cells is highly expected to modulate disease progression at asymptomatic stage.


Assuntos
Imunidade Adaptativa/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Imunidade Inata/imunologia , Envelhecimento/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Autofagia/genética , Autofagia/imunologia , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
18.
J Immunol ; 207(9): 2255-2264, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599081

RESUMO

MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Centro Germinativo/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Apresentação de Antígeno/genética , Células Cultivadas , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe II/genética , Imunidade Celular , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Ubiquitinação
19.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576154

RESUMO

Nowadays, cancers still represent a significant health burden, accounting for around 10 million deaths per year, due to ageing populations and inefficient treatments for some refractory cancers. Immunotherapy strategies that modulate the patient's immune system have emerged as good treatment options. Among them, the adoptive transfer of B cells selected ex vivo showed promising results, with a reduction in tumor growth in several cancer mouse models, often associated with antitumoral immune responses. Aside from the benefits of their intrinsic properties, including antigen presentation, antibody secretion, homing and long-term persistence, B cells can be modified prior to reinfusion to increase their therapeutic role. For instance, B cells have been modified mainly to boost their immuno-stimulatory activation potential by forcing the expression of costimulatory ligands using defined culture conditions or gene insertion. Moreover, tumor-specific antigen presentation by infused B cells has been increased by ex vivo antigen loading (peptides, RNA, DNA, virus) or by the sorting/ engineering of B cells with a B cell receptor specific to tumor antigens. Editing of the BCR also rewires B cell specificity toward tumor antigens, and may trigger, upon antigen recognition, the secretion of antitumor antibodies by differentiated plasma cells that can then be recognized by other immune components or cells involved in tumor clearance by antibody-dependent cell cytotoxicity or complement-dependent cytotoxicity for example. With the expansion of gene editing methodologies, new strategies to reprogram immune cells with whole synthetic circuits are being explored: modified B cells can sense disease-specific biomarkers and, in response, trigger the expression of therapeutic molecules, such as molecules that counteract the tumoral immunosuppressive microenvironment. Such strategies remain in their infancy for implementation in B cells, but are likely to expand in the coming years.


Assuntos
Linfócitos B/metabolismo , Edição de Genes/métodos , Animais , Anticorpos/metabolismo , Apresentação de Antígeno/genética , Apresentação de Antígeno/fisiologia , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos
20.
Nat Commun ; 12(1): 5302, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489420

RESUMO

The endoplasmic-reticulum aminopeptidase ERAP1 processes antigenic peptides for loading on MHC-I proteins and recognition by CD8 T cells as they survey the body for infection and malignancy. Crystal structures have revealed ERAP1 in either open or closed conformations, but whether these occur in solution and are involved in catalysis is not clear. Here, we assess ERAP1 conformational states in solution in the presence of substrates, allosteric activators, and inhibitors by small-angle X-ray scattering. We also characterize changes in protein conformation by X-ray crystallography, and we localize alternate C-terminal binding sites by chemical crosslinking. Structural and enzymatic data suggest that the structural reconfigurations of ERAP1 active site are physically linked to domain closure and are promoted by binding of long peptide substrates. These results clarify steps required for ERAP1 catalysis, demonstrate the importance of conformational dynamics within the catalytic cycle, and provide a mechanism for the observed allosteric regulation and Lys/Arg528 polymorphism disease association.


Assuntos
Aminopeptidases/química , Antígenos de Histocompatibilidade Menor/química , Simulação de Dinâmica Molecular , Polimorfismo Genético , Sítio Alostérico , Aminopeptidases/genética , Aminopeptidases/metabolismo , Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Expressão Gênica , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...